High Power Blue violet Laser Diode

- **Features**
 1. Wavelength: 406 nm (Typ.)
 2. Optical power output:
 - CW: 105 mW (Max)
 - Pulse: 210 mW (Max)
 3. 5.6mm CAN package

- **Applications**
 1. Blu-ray Disc/HD DVD drive
 2. Other new applications

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical power output(CW)</td>
<td>P_o</td>
<td>105</td>
<td>mW</td>
</tr>
<tr>
<td>Optical power output(Pulse)</td>
<td>P_p</td>
<td>210</td>
<td>mW</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>V_r</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>Operating temperature(CW)</td>
<td>$T_{op(CW)}$</td>
<td>-10°C to +70°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature(Pulse)</td>
<td>$T_{op(Pulse)}$</td>
<td>-10°C to +70°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>-40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>T_{sld}</td>
<td>350</td>
<td>°C</td>
</tr>
</tbody>
</table>

- T_c: Case temperature
- CW: Continuous Wave Operation
- Pulse: Pulse Operation (Pulse Width: 50ns Duty: 50%)
- Soldering position is 1.6mm apart from bottom edge of the case.
 (Immersion time: 3s)

(Notice)
- In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
- Specifications are subject to change without notice for improvement.

As of July, 2007
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold current</td>
<td>Ith</td>
<td></td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Operating current</td>
<td>Iop</td>
<td></td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>150</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>Vop</td>
<td></td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>6.5</td>
</tr>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td>Po=105mW</td>
<td>400</td>
<td>406</td>
<td>413</td>
<td>nm</td>
</tr>
<tr>
<td>Half intensity angle</td>
<td></td>
<td></td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>°</td>
</tr>
<tr>
<td>Parallel</td>
<td>0</td>
<td></td>
<td></td>
<td>16</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Perpendicular</td>
<td>0 ⊥</td>
<td></td>
<td>5.5</td>
<td>8.5</td>
<td>11.5</td>
<td>°</td>
</tr>
<tr>
<td>Half intensity angle</td>
<td></td>
<td>Po=5mW</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>°</td>
</tr>
<tr>
<td>Parallel</td>
<td>0</td>
<td></td>
<td></td>
<td>-2.5</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>Perpendicular</td>
<td>0 ⊥</td>
<td></td>
<td>-3.0</td>
<td>-</td>
<td>3.0</td>
<td>°</td>
</tr>
<tr>
<td>Misalignment angle</td>
<td></td>
<td>Parallel</td>
<td>95mW</td>
<td>l(105mW)-l(10mW)</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Perpendicular</td>
<td>Δθ ⊥</td>
<td></td>
<td>-10</td>
<td>-</td>
<td>10</td>
<td>%</td>
</tr>
</tbody>
</table>

\(^1\) Tc: Case temperature

\(^2\) Initial value, Continuous Wave Operation.

\(^3\) Definition of Kink

\(^4\) Angle of 50% peak intensity.(Full angle at half-maximum)

\(^5\) Parallel to the junction plane.(X-Z plane)

\(^6\) Perpendicular to the junction plane.(Y-Z plane)

\(^7\) Pulse : Pulse Operation(Pulse Width 50ns Duty:50%)

(Notice)

- In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
- Specifications are subject to change without notice for improvement.

As of July, 2007

ET-070803
Case temperature dependence of threshold current

- Relative threshold current
 - vs. Case temperature T_c ($^\circ$C)

Forward voltage – Forward current

- Forward voltage V_F (V)
 - vs. Forward current I_F (mA)

Optical power output – Forward current

- Optical power output P_o (mW)
 - vs. Forward current I_F (mA)

Far field pattern (FFP)

- Relative optical power output
 - vs. Angle θ ($^\circ$)

Case temperature dependence of wavelength

- Wavelength λ_p (nm)
 - vs. Case temperature ($^\circ$C)

Optical power dependence of Lasing spectrum

- Relative optical power output
 - vs. Wavelength λ_p (nm)

Note: Characteristics shown in diagrams are typical values. (not assurance value)

As of July, 2007
CAUTION

1. These technical sheets include materials protected under the copyright of Sharp Corporation ("Sharp"). Please do not reproduce or cause anyone to reproduce them without Sharp's consent.

2. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these technical sheets, as well as the precautions mentioned below. Sharp assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these technical sheets, and the precautions mentioned below.

 (Precautions)
 (1) This product is designed for use in the following application areas;
 * OA equipment * Audio visual equipment * Home appliance * Tooling machines * Computers
 If the use of the product in the above application areas is for equipment listed in paragraphs (2) or (3), please be sure to observe the precautions given in those respective paragraphs.

 (2) Appropriate measures, such as fail-safe design and redundant design considering the safety design of the overall system and equipment, should be taken to ensure reliability and safety when this product is used for equipment which demands high reliability and safety in function and precision, such as;
 * Transportation control and safety equipment (aircraft, train, automobile etc.) * Traffic signals * Gas leakage sensor breakers * Rescue and security equipment
 * Other safety equipment

 (3) Please do not use this product for equipment which require extremely high reliability and safety in function and precision, such as;
 * Space equipment * Telecommunication equipment (for trunk lines)
 * Nuclear power control equipment * Medical equipment

 (4) Please contact and consult with a Sharp sales representative if there are any questions regarding interpretation of the above three paragraphs.

3. Please contact and consult with a Sharp sales representative for any questions about this product.

(Notice)
- In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.
- Specifications are subject to change without notice for improvement.

As of July, 2007
ET-070803